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INTRODUCTION

Endometrial cancer is the most common type of gynecologic cancer in the United States and was
estimated by the American Cancer Society to have been newly diagnosed among 36,000 American
women in the year 2000 and lead to approximately 6500 cancer related deaths (1). Approximately 25%
of all endometrial cancers occur in premenopausal women (2). Major advances in our understanding and
treatment of endometrial cancer have occurred over the past decade, yet the frequency of this cancer in
the general population has not been altered appreciably. Despite the known protective effect of oral
contraceptives, little has been learned regarding the underlying mechanism. We believe that an
understanding of the molecular profiles of endometrial cancers and the molecular events underlying the
protective effect of oral contraceptives against endometrial cancer could facilitate the development of
effective chemopreventives and significantly decrease the incidence of endometrial cancer in women.

BODY

Aim 1: To characterize and compare the molecular profiles of Type I endometrioid endometrial
cancers, which often develop in an estrogen milieu, to that of Type II endometrial cancers. In
addition, we will use microarray to examine the molecular changes in the endometrium associated
with progestin exposure in order to gain insight into the biologic mechanism underlying the
chemopreventive effect of the oral contraceptive pill (OCP).

e A pilot study using a cDNA microarray platform was performed on 35 cases of endometrial cancer
and 7 normal endometrium samples (appendix 1). Following the notification of this award an
amended request for additional funds was submitted in an effort to obtain funds to facilitate a more
global genomic expression screen using the oligonucleotide 2-chip Affymetrix system. Excess
CDRMP funds were not identified to cover this additional expense. However, NCI intramural
funding was made available to supplement our microarray project and the set of 80 cancers
(including the 35 cases in the pilot study) was analyzed using the Affymetrix chips. In addition, 40
extra endometrial tumors were added to the analysis using available supplementary funds for a total
analysis of 120 tumors. The data using the Affymetrix oligonucleotide methodology has confirmed
our pilot study results: different histologic types of endometrial cancer have distinct molecular
expression patterns. Differential gene expression was obtained from over 18,000 genes that were
detected in at least 50% of the cases. Multi-dimensional scaling revealed grossly separated clusters
for each of the histologic groups (Appendix 2). The number of genes that were differentially
expressed at least 3-fold from normal epithelium (p<0.001) was 716 in endometrioid, 562 in
papillary serous, and 697 in MMT. In a comparison of endometrioid and MMT cases, 63 genes were
differentially expressed by at least 5-fold at p<0.001. Genes previously noted to be elevated in
endometrioid cancers were differentially expressed in this comparison (TFF2 and MUC1). Ina
comparison of 12 pairs of endometrioid and papillary serous cases matched for stage and grade, 65
genes were differentially expressed by at least 2-fold at p<0.005 (Appendix 3). Several genes
encoding IGF binding proteins were down regulated in endometrioid cancers. Class prediction for
both MMT versus endometrioid and papillary serous versus endometrioid comparisons was >90%.
Following a cross-reference of the two supervised comparisons, 14 genes (several known genes and
some with unknown function) were found to be associated with an endometrioid expression pattern
and present on both gene lists. This data has been accepted for oral plenary presentation at the
annual clinical meeting for the Society of Gynecologic Oncologists.




e A subset of the endometrioid endometrial cancer cases was analyzed for microsatellite instability
(MSI). The other types (papillary serous, clear cell, etc) were not analyzed since MSI is uncommon
is these histologic types. Both unsupervised (appendix 4) and supervised analysis (appendix 5) has
been completed on this microarray data and the manuscript is currently being completed. The
abstract has been accepted for poster presentation at the annual clinical meeting for the Society of
Gynecologic Oncologists.

e Since the rate of PTEN alteration was found to be approximately 95%, an analysis of the array data
based on PTEN status was not felt to have an adequate number cases with wild type PTEN to enable
an accurate analysis. Perhaps a future microarray study aimed at an analysis of PTEN in very early
stage endometrial cancers and precancerous endometrial conditions would facilitate an expression
profile associated with alterations in PTEN.

Aim 2: To analyze vaginal and cervical adenocarcinomas, that have arisen in women exposed to
DES in-utero for methylation and mutation of PTEN and MLH]1 in order to determine if estrogen
induces genetic alterations in these tumors characteristic of Type I endometrioid carcinomas.
Although a pilot study aimed at an analysis of MSI in 7 cases from the International DES Registry was
successful with repetitive attempts at DNA amplification (Appendix 6), the analysis of the entire set was
not successful presumably secondary to the quality of the DNA which reflects the old age of the
specimens and the various methods that were used in their preservation. Less than 50% of the samples
amplified at any one pf the markers making the data inadequate for designation of MSI status. The
experience of our lab and others in the use of MLH1 immunostaining indicates that this approach is an
option but not an optimal one given the difficulties that we have historically had with the antibodies
available for MLH1 immunostaining.

Our current intent is to evaluate the cases for PTEN immunostaining with the intent to evaluate
for methylation of the PTEN promoter in cases with altered PTEN expression. The methodology for
PTEN staining using human cancer has recently been optimized in preparation for analysis of the
samples that are being evaluated as part of Aim 4.

Aim 3: Using data from the Centers for Disease Control Cancer and Steroid Hormone Study, we
will determine if the protective effect of OCP’s against endometrial cancer are impacted by the
progestin or estrogen potency of OCP formulations.

Subjects included 417 endometrial cancer cases and 2,452 controls, between 20 and 54 years of

age, identified from the Centers for Disease Control Cancer and Steroid Hormone (CASH) study.
OCP’s were classified into four categories according to the individual potencies of each

hormonal constituent (high or low progestin or estrogen potency). Logistic regression was used

to calculate the odds ratio (OR) and 95% confidence interval (CI) for associations between
endometrial cancer risk and combination OCP formulations with high versus low estrogen and
progestin potencies. With non-users as the referent group, all combinations of OCPs were
significantly protective against endometrial cancer. Overall, OCP’s containing high potency
progestin were not significantly more protective against endometrial cancer as compared to

OCP’s with low progestin potency (OR 0.3, 95% CI 0.2-0.6; and OR 0.5, 95% CI 0.3-0.6
respectively) (Appendix 7). In patients with a body mass index (BMI) at or above the median,

there was a trend toward greater protection afforded by use of high potency progestin OCP’s

(BMI at the median or above: OR=0.6; 95% CI=0.3-1.2; BMI below the median: OR=1.3; 95%
CI=0.5-3.3). However the trend was not statistically significant and the study was not powered to
demonstrate this association relative to BMI. Patients taking OCP’s for a duration >18 months




had a greater protective effect than those patients who used OCP formulations for a shorter
duration (Appendix 8). The protective affect persisted for at least 16 years after cessation of OCP
use. Both the duration of OCP use and the interval of protection were not influenced significantly
by the potency of the progestin component. This manuscript was accepted for oral plenary
presentation at the annual clinical meeting for the Society of Gynecologic Oncologists.

Aim 4: To test the hypothesis that the oral contraceptives and hormone replacement therapy
progestins provide a chemoprotective effect against endometrial cancer through induction of
apoptosis, PTEN, and TGF-beta in the endometrium.

Epidemiological studies have demonstrated that OCP use lowers the risk of subsequent
endometrial and ovarian cancer. Although the biologic mechanism(s) underlying the protective
effect of OCP’s on the risk of both of these cancers have not been well defined, there is evidence
to suggest that biologic effects related to the progestin component may underlie the cancer
preventive effects of the OCP. Recent studies have reported the progestin-mediated activation
of apoptosis in endometrial cancer cell lines and endometrial hyperplasias. The finding that
progestin activates the apoptosis pathway in endometrial cells raises the possibility that this may
be a major mechanism underlying the therapeutic effect of progestins against endometrial
hyperplasia. Similarly, our group has found that progestins markedly activate both apoptosis and
TGF-beta expression in the ovarian epithelium leading to the hypothesis that progestins may act
as chemopreventives for ovarian cancer (see preliminary data below). It is interesting that
tumors arising from the ovary and endometrium share common epidemiological risk factors, and
that both the endometrium and ovarian surface epithelium share a common embryological
precursor. It is thus plausible that progestins activate similar molecular pathways relevant to
cancer prevention in both of these organ sites. Recent evidence suggests that expression PTEN
appears to be upregulated in the secretory phase of the menstrual cycle. It is plausible that the
chemopreventive effects of OCP’s are mediated through overexpressed PTEN with resultant
suppression of cell cycle progression and activation of apoptosis in endometrial cells.

e The long term effects of progestins on apoptosis as well as the expression of PTEN and TGF-b in the
endometrium were to be evaluated using uterine specimens from 210 cynomolgus macaques (80
premenopausal and 130 postmenopausal) previously part of a three-year randomized trial designed
to evaluate the effects of the combination oral contraceptive pill and hormone replacement therapy
on reproductive organs. The assay conditions for the analysis of these samples has been optimized
and the macaque slides are currently being interpreted.

e The short-term effects of progestins on apoptosis as well as the expression of PTEN and TGF-f in
the endometrium will be evaluated using uterine specimens collected from patients enrolled in a
double-blinded prospective randomized trial. The initiation of this trial has been delayed secondary
to multiple revisions requested by multiple IRB committees. However, the protocol recently has
been completed and the study will soon be underway at both Walter Reed and Evanston
Northwestern. The tissue collected as part of this trial will also be used in part 2 of Aim 1, which
will involve a microarray analysis of microdissected endometrium samples.




KEY RESEARCH ACCOMPLISHMENTS

Identified 191 genes that are differentially expressed in endometrial cancer vs. normal
endometria.

Determined that expression differences in only 24 transcripts could distinguish between the
two most common types of endometrial cancers. v
Demonstrated that the use of oral contraceptives (OC) reduces the risk of endometrial cancer
regardless of progestin potency.

Demonstrated that the chemopreventive effects of OCPs persist for at least 16 years after
cessation of therapy.

REPORTABLE OUTCOMES

Research
Manuscript
e Risinger JI, Maxwell GL, Chandramouli GVR, et al. 2003. Microarray analysis
reveals distinct gene expression profiles among different histologic types of
endometrial cancer. Cancer Research 63:6-11.

Abstracts

e Risinger JL 2004. Gene expression profiles detect separate modulators of
carcinogenesis in microsatellite unstable versus microsatellite stable endometrial
cancers. Society for Gynecologic Oncologists. Abstract “In press”. Gynecologic
Oncology

e Maxwell GL. 2004. Progestin and estrogen potency of combination oral
contraceptives and endometrial cancer risk. Society of Gynecologic Oncology.
Abstract “In press”. Gynecologic Oncology

e Maxwell GL. 2004. Microarray analysis of different histologic types of uterine
cancer reveals unique expression profiles. Abstract “In press”. Gynecologic
Oncology

Presentations
e Maxwell GL. Microarray analysis reveals distinct gene expression profiles among
different histologic types of endometrial cancer. Society of Gynecologic Oncologists
Annual Meeting. New Orleans, Louisiana.

e Maxwell GL. Microarray analysis reveals distinct gene expression profiles among different

histologic types of endometrial cancer. American College of Obstetricians and
Gynecologists, Armed Forces District Annual Meeting.




CONCLUSIONS

Different histological types of cancer have genomic expression patterns that reflect unique pathways of
carcinogenesis. Likewise, cancers characterized by microsatellite instability result in the expression of
genes most likely to be affected by alterations in mismatch repair. As we improve our understanding of
the alterations that accompany endometrial carcinogenesis, it is likely that future chemopreventives may
be developed for several types of endometrial cancer, each of which develops by specific pathways.
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Microarray Analysis Reveals Distinci Gene Expression Profiles among Different

Histologic Types of Endometrial Cancer

John I Risinger, G. Larry Maxwell, G. V. R. Chandramouli, Amir Jazaeri, Olga Aprelikova, Tricia Patterson,

Andrew Berchuck, and J. Carl Barrett'
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Abstract

Previous studies of oncogene and tumor suppressor gene alterations
have suggested that differences exist in the molecular pathogenesis of the
various histological types of endometrial cancer. To elucidate further the
molecular events involved in endometrial carcinogenesis, we examined
global expression patterns of 16 nonendometrioid cancers (13 serous
papillary and 3 clear cell), 19 endometrioid cancers, and 7 age-matched
normal endometria using cDNA microarrays. Unsupervised analysis of
gene expression identified 191 genes that exhibited >2-fold differences
(P < 0.001) between the histological groups. Many genes were similarly
dysregulated in both nonendometrioid and endometrioid cancers relative
to normal endometria. Gene expression differences in only 24 transcripts
could distinguish serous from endometrioid cancers, the two most com-
mon subgroups. These data provide the basis for investigation of previ-
ously unrecognized novel pathways involved in the development of endo-
metrial cancers.

Introduction

Two subtypes of endometrial carcinoma have been described based
on both clinical and histopathologic variables (1). Type I endometrial
cancers account for the majority of cases, and these cancers are
usuatly well differentiated and E? in histology. These cancers are
associated frequently with a history of unopposed estrogen exposure
or other hyperestrogenic risk factors, such as obesity. Patients, with
type I endometrial cancer, typically have early stage disease and a
favorable prognosis with appropriate therapy. In contrast, Type II
endometrial cancers are often poorly differentiated, non-E, and are not
associated with hyperestrogenic factors. These cancers are more likely
to be metastatic at presentation and often recur despite aggressive
clinical interventions.

Molecular genetic evidence indicates that endometrial carcinoma
likely develops as the result of a multistep process of oncogene
activation and tumor suppressor gene inactivation (2). Our group and
others have described some of these changes and demonstrated that
these molecular alterations appear to be specific for Type I (E) and
Type 1I (non-E) cancers. Type I cancers are characterized by mutation
of PTEN (3-5), KRAS2 (6, 7), and CTNNB! (8, 9) defects in DNA
mismatch repair (Ref. 10; as evidenced by the microsatellite instabil-
ity phenotype) and a near diploid karyotype (11). Type II cancers
often contain mutations of TP53 (12-14) and Her-2/neu (15) and are
usually nondiploid (11).

Received 9/30/02; accepted 11/14/02.

The costs of publication of this article were defrayed in part by the payment of page
charges. This article must therefore be hereby marked advertisement in accordance with
18 U.S.C. Section 1734 solely to indicate this fact.

1 To whom requests for reprints should be addressed, at NIH, 9000 Rockville Pike,
Building 37, Room 5032, Mail Stop Code 4262, Laboratory of Biosystems and Cancer,
National Cancer Institute, Bethesda, Maryland 20892.

2 The abbreviations used are: E, endometrioid; NCI, National Cancer Institute; PS,
papillary serous; PEG3, polyethylene glycol 3; STAT12, signal transducers and activators
of transcription 12; TFF, intestinal trefoil factor; FOLR, folate binding protein; IGF,
insulin-like growth factor; AGR2, anterior gradient 2; CC, clear cell.

The molecular pathogenesis of endometrial cancer is incompletely
understood. Although alterations in several genes noted above have
been described, none are present in the majority of cases. In addition,
some endometrial cancers lack evidence of alterations in any of these
genes. In a recent survey of our databases, we found that 44 of 87
endometrial cancers (50%) were lacking mutations in PTEN, TP53,
CTNNBI, or the microsatellite instability phenotype, although about
half of these cancers was advanced stage. This suggests the existence
of unrecognized pathways that can lead to the development of endo-
metrial cancer. To elucidate further the molecular pathogenesis of
endometrial cancers, we have used ¢cDNA microarrays to examine
patterns of gene expression in E and non-E cancers and normal
endometrium.

Materials and Methods
Specimens and Nucleic Acid Isolation

Flash frozen endometrial cancers were obtained from patients undergoing
hysterectomy at Duke University Medical Center. None of the patients had
received preoperative chemotherapy or radiation. In addition, samples of
normal endometrium (N) were obtained from patients undergoing hysterec-
tomy for benign gynecological diseases. Tissues were obtained at Duke with
Institutional Review Board-approved informed consent, and this study was
approved by the NCI Institutional Review Board. Endometrial cancers were
examined by a gynecologic pathologist to confirm the histologies as being PS,
E, or CC. Tissue samples were subjected to RNA isolation using TRIzol and
an additional purification using the RNeasy Kit (Qiagen, Valencia, CA)
following the manufacturer’s recommendation. We examined 19 histologically
normal endometria that were age matched to the cancers and able to isolate a
sufficient quantity of dissected glandular epithelium in only seven that were
used in this study. After isolation of RNA, the integrity of each RNA sample
was verified by denaturing gel electrophoresis.

Microarray Processing

Total RNA was amplified linearly with a modification of the Eberwine
method. Briefly, total RNA was reverse transcribed by using a 63 nucleotide
synthetic primer containing the T7 RNA polymerase binding site, 5'-
GGCCAGTGAATTGTAATACGACTCACTATAGGGAGGCGG(T)24-3".
Second-strand cDNA synthesis (producing double-stranded cDNA) was per-
formed with RNase H, Escherichia coli DNA polymerase I, and E. coli DNA
ligase (Invitrogen, Carlsbad, CA). After cDNA was made blunt ended with T4
DNA polymerase (Invitrogen), it was purified by extraction with a mixture of
phenol, chloroform, and isoamy! alcohol and by precipitation in the presence
of ammonium acetate and ethanol. The double-stranded ¢cDNA was then
transcribed with T7 RNA polymerase (T7 Megascript kit; Ambion, Austin,
TX), yielding linearly amplified antisense RNA, which was purified with
RNeasy mini columns (Qiagen). The cDNA microarray chips contained 9984
total features representing the human GEM2 set of clones (InCyte) and were
manufactured at the NCI microarray facility. Four micrograms of amplified
RNA were reverse transcribed and directly labeled with cyanine 5-conjugated
dUTP (endometrial RNA) or cyanine 3-conjugated dUTP (Stratagene Univer-
sal Reference RNA). Hybridization was performed in § X saline sodium citrate
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Fig. 1. Multidimensional scaling model based on the
overall gene expression in PS, E, CC, and normal endo-
metrium (N).

containing 25% formamide for 14-16 h at 42°C. Slides were washed, dried,
and scanned. A detailed protocol for RNA amplification, cDNA probe label-
ing, and hybridization is available on the Internet.> Genepix software (Axon
Instruments, Inc., Union City, CA) was used to analyze the raw data, which
were then uploaded to a relational database maintained by the Center for
Information Technology at the NIH (Bethesda, MD).

Data Analysis

The microarrays were scanned on an Axon Instruments Genepix 4000A
scanner (Axon Instruments, Foster City, CA) at wavelengths 635 and 532 nm
for Cy5 and Cy?3 dyes, respectively, to obtain images of 10-pm resolution. The
quantification of spot intensities, qualities, and local background was per-
formed automatically by Genepix software using variable spot diameter in the
range 70-180 pm and a manual supervision for any inaccuracies in the
automatic spot detection. Local background correction was applied to spot
intensities before the calculation of expression ratios. The spots having a
minimum signal level of 250 counts and well defined with =70% of the pixels
above SD were used for expression analysis. The expressions were normalized
by median centering the logarithmic expression ratios of Cy3 and Cy5 signals
within each array. The logarithmic ratio versus logarithmic signal scatters and
Cy5 signal versus Cy3 signal scatters did not indicate any abnormalities in
distributions. Statistical analysis was performed using Biometric Research
Branch Array Tools software (NCI) using logarithmic values of expression
ratios to the base 2.

A set of 9431 cDNA clones with good spot quality from a total of 9984
spotted on microarray was used to study differential gene expression. The
significance of expression differences between tissues was computed by F tests
at a two-tailed P <0.001. All of the genes found significant by F test were
ranked by the magnitude of average expression differences, which gave 412
transcripts above a 1.5-fold ratio threshold and 191 genes above a 2-fold
threshold level. The SE values computed for 99% of average expressions of the
different histological groups were <1.25-fold, indicating this value as a
general error level of averaged expressions. The random chance of obtaining
significant differential expression at P < 0.001 and above ratio 1.5 threshold
level was computed as follows. The percentage of average expression differ-

3 Internet address: hitp://nciarray.nci.nih.gov/reference/index.shtml.

ences of all of the 9431 genes on arrays > 1.5 threshold was estimated as 8%.
Considering this as high limit of random possibility of expression
change > 1.5 fold, at the most, only 1 of 9431 clones on the array could be
identified as significant by random chance at P < 0.001. At a 2-fold ratio
threshold level, the random chance is computed as 0.2 of 9431 genes.

Hierarchical Clustering. The set of genes differentially expressed > 2-
fold was clustered by the similarity of their expression profiles. Hierarchical
clustering was performed on logarithmic values of expressions using 1-p as
distance metric, where p is the correlation coefficient of any two gene expres-
sions (16). The expression data were shown relative to average normal endo-
metria expression. The cluster is color coded using red for up-regulation from
pormal endometria and green for down-regulation.

Multidimensional Scaling. The similarities of gene expression profiles of
samples were studied by a multidimensional scaling procedure (Young and
Hamer details available on the Internet).* Each sample was considered as an
n-dimensional vector where each gene represents a dimension, and n is the
number of genes. The dissimilarities of samples were computed using 1-p as
distance metric, where p is the correlation coefficient of the two samples. Each
sample is represented as a coordinate in a three-dimensional space as shown in
Fig. 1. Samples with similar gene expressions on microarray are placed at
closer proximity compared with the dissimilar ones.

Classification. Binary class comparison and prediction was performed on
PS and E pairs. The genes distinguishing PS and E were selected by F test
(P < 0.001). The class prediction was performed by computing compound
covariate of gene expressions (17). The compound covariate is defined as 2
t; X (x; — m,), where x; is the expression of gene i in sample j, m; is the
midpoint of two classes for gene i, t; is the t score, and the summation is overall
genes selected for classification. The prediction was performed by leaving one
sample out at a time for cross-validation and using all other samples for
classification. The cross-validated misclassification error rate was estimated by
10,000 random permutations of class labels as <0.01%. The class prediction
using 232 differentially expressed genes between PS and E could successfully
predict 94% of the samples.

Data availability. The complete dataset can be accessed on the Internet.?

“ Internet address: http:/forrest.psych.unc.edu/teaching/p208a/mds/mds.htmi.
5 Internet address: http://home.cer.cancer.gov/risingerdatal102.
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Fig. 2. Molecular profiles of alt 42 specimens: 13 PS, 19 E, 3 CC, and 7 normal endometrium (N). a, hierarchical clustering of 191 genes with differential expression between each
of the four groups (P < 0.001) using a threshold of 2-fold. The cluster is color coded using red for up-regulation from normal endometrium, green for down-regulation, and black for

median expression. Agglomerative clustering of genes was illustrated with dendrograms. b, hierarchical clustering of the 20 most up-regulated and down-regul

d genes across in the

comparison of the four groups. The symbol for each gene is followed by the Unigene clone number of the corresponding DNA spotted on the array. Expression ratios comparing each
of the two groups to normal endometrium as well as to each other are listed. ¢, quantitative PCR (TagMan) and microarray expression analysis of five selected genes differentially

expressed between PS and E cancers with normal endometria.

Quantitative Real-time PCR

The relative expression of genes shown in Fig. 2 was determined as follows.
The concentrations of genes PEG3, STATI2, REV3L, FOXOIA, MLLT7, and
glyceraldehyde-3-phosphate dehydrogenase for all samples were determined
using the standard curve method for normalization. Sequences for primers and
probes are available on request. The gene expressions were then compared
with average threshold PCR amplification cycle time of normal endometrial
samples. Fig. 2c shows relative gene expressions (on logarithmic scale to base
2) compared with normal endometria. The SE values are shown as error bars,
Gene expression assays (assay on demand) for the analysis of samples that
distinguish PS and E cases were purchased from Applied Biosystems (Foster
- City, CA). The concentrations of genes TFF3, IGF-II, dual specificity phos-
phatase 6, AGR2, ubiquitin COOH-terminal esterase-like I, and FOLR] were
determined using multiplex PCR (same tube) method, where B-actin was used
as a reference. The relative expressions were compared with average normal
- endometrial expression as above.

Results and Discussion

The endometrium is one of the most dynamic tissues present in
placental mammals and poses interesting questions regarding exper-
imental approaches with gene expression array technologies, because

levels of ovarian steroids would be predicted to drastically affect gene
expression. Previous global expression profile analysis has examined
the normal endometria of normal cycling women and in one case
compared these data to a limited set of E endometrial cancers (18-20).
We chose to examine a set of cancers and normal tissues matched for
age and typical of the median age of onset for endometrial cancers,
which is generally after the period of normal cycling. We analyzed the
RNA from 42 endometrial samples and hybridized them with a
universal reference RNA against a cDNA gene chip with 9984 fea-
tures, most of which are known genes. RNA preparation and proc-
essing of arrays were stringently controlled for quality and reproduc-
ibility. After array processing and scanning, 9431 features provided
gene expression data sufficient for analysis (expression was present in
either the endometrial or universal RNA).

Initially, to seek similarities of expression profiles, we classified the
35 endometrial cancers and 7 normal endometria using unsupervised
multidimensional scaling. Multidimensional scaling using all of the
9431 genes on arrays revealed distinctively separated clusters for PS,
CC, E, and normal endometria, indicating consistent global expression
changes for each type of sample. This analysis indicated that gene
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expression patterns between samples were somewhat variable, as
expected, but differences were sufficient to cluster the majority of
cases into their respective subgroups (Fig. 1). These data are in
accordance with the differing morphological characteristics of these
samples yet still show the heterogeneity predicted of any cancer.
Somewhat surprisingly, two PS cancers clustered close to the normal
endometrial samples. Additionally, the distinct clustering of the three
CC cancers indicates that their underlying biology may be distinct
from the majority of serous papillary and E lesions.

Next, we compared the relative gene expressions based on the indi-
vidual histology. The significance of expression differences of genes
between samples was computed using F tests. The significant differential
gene expression from normal endometrial tissue (N) to PS, E, or CC
histology was separately determined with a two-tailed F test (P < 0.001).
At this statistical significance level, 293 genes in PS, 281 genes inE, and
67 genes in CC were found to differ significantly from normal endome-
tria. F tests comparing PS and E, PS and CC, and N and CC revealed 232,
16, and 113 differentially expressed genes at the same significance level.
These data indicate the least significant differences in the expression
profiles were between PS and CC, whereas the greatest differences were
between PS and normal endometria.

To further understand the underlying biology of these groupings,
the 191 genes that statistically differed between one or more of the
four subgroups and exhibited at least a 2-fold gene expression differ-
ence were analyzed using hierarchical clustering (Fig. 2a). We
grouped these and depicted the 20 most highly up-regulated and 20
most highly down-regulated genes (Fig. 2b). Many genes shown
previously to be involved in carcinogenesis are present on these lists,
providing some validity to our array analysis, including the platelet-
derived growth factor-A and AXL genes, which were included in a
previous array study (20). To further verify the quality of our array
data, a subset of five genes (PEG3, STATI2, REV3L, FOX0IA, and
MLLT7) was examined in all 42 tissue specimens using quantitative
real-time PCR (TagMan; Fig. 2c). These genes were chosen based on
their universal down-regulation in both E and non-E cancers and on
their potentially interesting roles in carcinogenesis.

Defects in DNA mismatch repair characterize only ~25% of E
endometrial cancers (10), suggesting that other unrecognized DNA
repair pathways are impaired in endometrial cancers. To examine this
concept, we scanned our array data for genes involved in DNA repair
processes. Microarray analysis indicated that most PS cancers under-
expressed the DNA polymerase { catalytic subunit REVL, as did a
significant portion of the E lesions. Loss of this activity could result
in a hypermutagenic phenotype as the result of defective translesion
repair synthesis, a major route of DNA resynthesis after DNA repair.
Real-time PCR analysis confirmed the down-regulation of this gene in
endometrial cancers (Fig. 2¢).

Endometrial cancers likely evolve in part as a result of many epigenetic
defects, including loss of imprinting and promoter hypermethylation, e.g.,
most endometrial cancers with the microsatellite instability phenotype do
not contain mutation of a mismatch repair gene but instead contain
hypermethylated MLHI promoter alleles that silence transcription from
this Tocus (21, 22) Evidence for other hypermethylated loci in endome-
trial cancers involves the estrogen and progesterone receptors and the
adenomatous polyposis coli tumor suppressor gene (23-25). Our array
and a previous array study that included only E cancers (20) indicate
many down-regulated genes, some of which may be silenced by similar
epigenetic mechanisms. We chose to examine the PEG3 gene as one of
these down-regulated transcripts in which to verify our array data. PEG3,
a kruppel type zinc-finger transcription factor, is transcribed from a
paternally imprinted locus on chromosome 19. PEG3 is down-regulated
in gliomas by a hypermethylation mechanism (26), and reintroduction of
PEGS3 suppresses tumor formation in glioma cell lines (27) Our microar-

ray and real-time PCR analysis show a dramatic reduction in PEG3
mRNA almost universally in endometrial cancers, pethaps indicating
identification of a novel unrecognized pathway in endometrial carcino-
genesis. Several genes like PEG3 are candidates for epigenetic down-
regulation by promoter hypermethylation in endometrial cancers.

Several genes that may impact on a central signaling pathway involv-
ing the mammalian counterparts of the C-elegans insulin/IGF-I cell
survival or longevity pathway were identified on our array. PTEN, an
essential lipid phosphatase that has activity in many signal transduction
paths is a key component of this pathway and is mutated in many E
endometrial cancers (3-5). PTEN negatively regulates signals through its
lipid phosphatase activity (28). We hypothesize that many risk factors for
endometrial cancer act by elevating growth factors like estrogens and
IGF-1, which serve to constitutively activate antiapoptosis pathways. -
Normally, negative regulators of these pathways like PTEN suppress
carcinogenesis, and endometrial cancers can only arise clonally from rare
cells that escape the tight regulation of these pathways either through
gene mutations or epigenetic changes. Mutation of PTEN has been
demonstrated in histologically normal and hyperplastic endometrium,
suggesting that alteration of this tumor suppressor gene may be an early
event in carcinogenesis of E endometrial cancer (29, 30).

Interestingly, array data indicated the down-regulation of two forkhead
transcription factors, MLLT7 and FOXOIA, also known as AFX and
FKHR. These transcripts represent two of the three mammalian homo-
logues to the C-Elegans DAF-16 forkhead transcription factor involved in
insulin/IGF-1 signaling and cell longevity. PTEN, a negative upstream
regulator of this pathway, affects downstream signaling presumably
through augmentation of cell survival and antiapoptosis programs. This
activity is mediated in part through the phosphorylation of the v-AKT
homologues, which are augmented in the absence of functional PTEN.
Phosphorylated AKT acts on FKHRs by directing their ubiquitination in
the cytoplasm and subsequently allowing the transcription of antiapo-
ptotic genes. Interestingly, our array data indicate that these two forkhead
transcripts are down-regulated in endometrial cancers, suggesting an
additional mechanism by transcriptional repression. This observation
would result in the diminution of the activity of DAF-16 homologues.
The exact downstream changes that might result from this diminution and
contribute to endometrial carcinogenesis are obscure. Independent real-
time PCR analysis confirms the down-regulation of these genes in our
cancer set and the need to further explore this observation (Fig. 2¢).

Loss of tamor suppressor activities is a fundamental property of
most cancer types. Our gene array analysis indicated a down-regula-
tion of the STATI2 or SOCS2 transcript in endometrial cancers.
SOCS2 possesses functional characteristics of a tumor suppressor
gene. Specifically, SOCS2-deficient mice exhibit a giant phenotype as
the result of nonabrogated growth (31). This phenotype is identical to
mice given exogenous IGF-I or growth hormone. Subsequent study
based in part on this observation indicated that SOCS2 also directly
interacts with the IGF receptor (32). This observation also potentially
links this gene to the insulin survival pathway. Additionally, we also
noted dysregulation of the YWHAZ (14-3-3 zeta) transcript in our
array data. Limited evidence also implicates this gene to the insulin
survival pathway by its association with IRS1 (33). Deregulation of
growth factor pathways caused by inappropriate epithelial-stromal
interactions have been proposed a potential mediator of endometrial
carcinogenesis (34, 35). SOCS2 may also function in this capacity.
Down-regulation of SOCS2, Forkhead transcription factors, and mu-
tant PTEN indicate significant convergence on the IGF-I cell survival
pathway in this tumor type.

Determining the gene expression differences between E and serous
cancers represents a potential step in determining the differences
between these two most common histologies of endometriat cancer. A
relatively few transcripts could distinguish between these two types of
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Fig. 3. Gene expression differences that distinguish
PS versus E endometrial cancer. a, hierarchical clus-
tering of 75 nonredundant genes with statistically
differential expression between the PS and E cancer
groups (modified F test, P < 0.001) using a threshold
of 1.5-fold. The cluster is color coded using red for
up-regulation from normal endometrium (N), green
for down-regulation, and black for median expression.
Agglomerative clustering of genes was illustrated with
dendrograms. b, quantitative PCR (TagMan) and mi-
croarray expression analysis of six selected genes
differentially expressed between PS and E cancers
also showing their relative expression in normal en-
dometrium (N).
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endometrial cancer (at =2-fold difference in 24 genes and 1.5-fold
difference in 75 genes). The entire list of 75 genes is depicted in
Fig. 3, including the relative expression of all cancers in each histo-
logical group. We validated the expression of six of the transcripts,
including the FOLR, dual specificity phosphatase 6, IGF-1I, TFF3,
AGR2, and ubiquitin COOH-terminal esterase-like 1. All six tran-
scripts were analyzed by real-time PCR and confirmed our microarray
analysis (Fig. 3b). Class prediction models could reproducibly define
30 of 32 cancers into either serous or E histology (data not shown).
Interestingly, the two cancers that were not accurately classified in
_this model were the same two serous cancers that grouped with
normal atrophic endometrium in multidimensional scaling analysis.
These two cancers may represent a grouping of serous cancers that
could be distinguished with a larger sample set or may represent
anomalies because of some other undetermined factors. Despite these

10

two samples, the successful analysis on such a limited number of
samples suggests that class prediction models could be applied to
future endometrial arrays with the idea of predicting clinical
outcomes.

Quantitative PCR analyses are more reflective of the absolute level of
gene expression differences than are cDNA arrays. This analysis vali-
dated our array data in all cases but indicated substantial gene expression
differences in three of the transcripts that we chose to validate. In
particular, transcript for the intestinal trefoil protein, TFF3, was dramat-
ically up-regulated in the cancers with E histology as was the AGR2
developmental gene (Fig. 3c). The trefoil peptides are implicated in other
cancer types and down-regulation of TFF1 and TFE2 is often accompa-
nied by up-regulation of TFF3, which mediates various cell adhesion and
other signaling pathways (36-39). The observed ~40-fold up-regulation
of this gene deserves more study in E cancers.

L]




Overexpression of the folate receptor and its fetal homologues was
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noted in the PS cancers. Real-time quantitative PCR assays revealed that

overexpression of FOLR in PS cancers was even more striking than  20.

suggested by the microarray, with 9 of 13 PS tumors showing a signif-
icantly elevated leve] of expression compared with normal endometrium.

These data are represented as a group in Fig. 3b, where these cancers 21

express this gene at levels > 60-fold, as compared with normal endo-
metria. Vaccines that target FOLR have been developed for use in

ovarian carcinoma (40—42) and could potentially be used in the adjuvant 22

treatment of PS endometrial cancers that overexpress this gene.

In summary, these array data will be useful for investigating path-
ways to be targeted by small molecules or for future gene reactivation

strategies yet to be realized. As expected, many genes were disregu-

lated in various histological groups, but our data also indicate many 24

genes similarly disregulated in the various histologies. These data

identify several additional pathways important in the development of ~ 25.

endometrial cancer and suggest multiple avenues of investigation.

26.
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The similarities of gene expression profiles of samples were studied by a principle component analysis
(PCA) procedure. Each sample was considered as an n-dimensional vector where each gene represents a
dimension and » is number of genes. Each sample is represented as a coordinate in a three dimensional
space as shown. Samples with similar gene expressions on microarray are placed at closer proximity
compared to the dissimilar ones. PCA based on the overall gene expression in endometrioid (green),
mixed mullerian tumor (red), and normal endometrium (blue)
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Gene expression differences that distinguish papillary serous (PS) versus endometrioid (E)
endometrial cancer. Hierarchical clustering of 65 nonredundant genes with statistically
significant differential expresswn between the papillary serous and endometrioid cancer groups
(modified F test, P<0.005) using a threshold of 2-fold. The cluster is color-coded using red for
up-regulatlon from normal endometrium (N), green for down-regulation and black for median
expression. Agglomerative clustering of genes was illustrated with dendrograms.
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The similarities of gene expression profiles of samples were studied by a principle component analysis
(PCA) procedure. Each sample was considered as an n-dimensional vector where each gene represents a
dimension and 7 is number of genes. Each sample is represented as a coordinate in a three dimensional
space as shown. Samples with similar gene expressions on microarray are placed at closer proximity
compared to the dissimilar ones. PCA based on the overall gene expression in microsatellite instability
(MSI) (red) and microsatellite stable (MSS) (green) endometrioid endometrial cancers.
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BE620598
BC004863.1
795126
AF083380.1
NM _018123.1
A1732488
AF016004.1
AASER092
A1561253
AF288404.1
A1797263
M37484.1
AK023446.1
NM_000249.1
NM_001290.1
AFI133207.1
NM_007046.1
AI821935
AW089415
BEOM614
NM_005380.1
Al281593
NM_003304.1
U19495.1
M18767.1
NM_014805.1
135504 1
NM_016569.1
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BER78495

Description

poiermally expressed 10

fibeoblast gronth factor 18

$100 calcium binding proteia P

ypothesical proteia LOC201725
phosphoserine aminotrarsfemse

PAC 30P20

Wolf-Hirschbom syndrome candidnie |

asp (sbonnal spindle)ike, microcephaly associ
H. sapsens, clone MGC: 24047 IMAGE 4295881
glycopeolein MEB

R sapiess cONA FLII3403 fis(GPAAL)
inch-2

Homo sapieas, clone IMAGE 52707H

insulinike growth factor | (sommomedia C)
sminoackipate-semizidehyde oynthece

autl. homolog 1, colon eancer, noapolypesis type 2 {E. eoli}
LIM domain binding 2

protein kingse Hi1

elastin microfibeil interface located protein

secreied frizzied-retated prokein 4
tenascin XB
"~ son of sgeniciy 1

decorit

ransient recepior potential cation cheasel, sublamily C, membes 1

chemokine (C-X-C motif} ligand 12 (stromed cellderived facior 1}
. 1. ssubcomp

EPM24 interacting protein |
g e v ernt 5 o

Tebeot 3 (ultar mammary syndrome)
peotein tyrosine phosphatase. receplor type, M
Moderately smilr to PROMTS protein {H sapiens]

Bypothetical peoicin DKFZpS6C 1021
casbosypeptidsse M

Expression Ratio

MSS
N

1.039
0.829
1.649
0917
0472
1.316
1.293
1.848
3614
2.759
1.757
2502
1.423
0.787
1.576
0414
0.449
0837
0238
0.503
0519
0.449
0.610
0.204
0.522
0.165
0218
0.263
0.567
0.631
0.616
0.438
1.218
3.327
2428
6611
2.187

Hierarchical clustering of 37 nonredundant genes with statistically significant differential

expression (modified F test, P<0.005) between the microsatellite instability (MSI) and

microsatellite stable (MSS) groups using a threshold of 3-fold. The cluster is color-coded
using red for up-regulation from normal endometrium (N), green for down-regulation and
black for median expression. Agglomerative clustering of genes was illustrated with

dendrograms.
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APPENDIX 7

Age adjusted odds ratios and 95% CI for endometrial cancer according to OC hormone
potency, with non-users as referent group

Progestin/Estrogen _ Cases, n (%) Controls, n (%) OR __ 95%CI
Non-user 347 (83) 1430 (58) 1.0  Referent
High/high 16 (4) 309 (13) 04  (0.2-0.6)
High/low* 0(0) 11 (0) - -
Low/high 379 419 (17) 0.5 (0.3-0.7)
Low/low 17 (4) 283 (12) 04 (0.3-0.7)
Progestin OR 95% CI

Non-user 1.0 Referent

Low 0.3 (0.2-0.6)

High 0.5 (0.3-0.6)

Estrogen OR 95% CI

Non-user 1.0 Referent

Low 0.4 (0.3-0.6)

High 0.4 (O'.2'0'7)

Note

* The low frequency of high progestin/low estrogen formulation use (<1% of OC
users) prevented an independent statistical assessment of this group
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APPENDIX 8

Age adjusted odds ratios for endometrial cancer according to OC hormone potency and
duration of OC with nonuser as the referent

Progestin
High
Low

Estrogen
High
Low

3-18 mos. use
prog/estrog [case/con]

[9,71]
[23,212]

[24,180]
[8,103]

19-59 mos. use

OR 95% CI [case/con]

0.8 (0.4-1.7) [2,122]
0.6 (0.4-1.0) [13,228]

0.8 (0.5-1.2) [11,262]
0.5 (0.2-1.0) [4,88]

60+ mos. use

OR 95%CI [case,cont] OR 95% CI

0.1 (0.0-0.5) [5,126]
0.4 (0.2-0.7) [17,255]

0.3 (0.1-0.5) [18,279]
0.5 (0.2-1.3) [4,102]

0.2 (0.1-0.6)
0.4 (0.2-0.6)

0.4 (0.2-0.6)
0.2 (0.1-0.7)




